3x^2+100x-625=0

Simple and best practice solution for 3x^2+100x-625=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+100x-625=0 equation:


Simplifying
3x2 + 100x + -625 = 0

Reorder the terms:
-625 + 100x + 3x2 = 0

Solving
-625 + 100x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-208.3333333 + 33.33333333x + x2 = 0

Move the constant term to the right:

Add '208.3333333' to each side of the equation.
-208.3333333 + 33.33333333x + 208.3333333 + x2 = 0 + 208.3333333

Reorder the terms:
-208.3333333 + 208.3333333 + 33.33333333x + x2 = 0 + 208.3333333

Combine like terms: -208.3333333 + 208.3333333 = 0.0000000
0.0000000 + 33.33333333x + x2 = 0 + 208.3333333
33.33333333x + x2 = 0 + 208.3333333

Combine like terms: 0 + 208.3333333 = 208.3333333
33.33333333x + x2 = 208.3333333

The x term is 33.33333333x.  Take half its coefficient (16.66666667).
Square it (277.7777779) and add it to both sides.

Add '277.7777779' to each side of the equation.
33.33333333x + 277.7777779 + x2 = 208.3333333 + 277.7777779

Reorder the terms:
277.7777779 + 33.33333333x + x2 = 208.3333333 + 277.7777779

Combine like terms: 208.3333333 + 277.7777779 = 486.1111112
277.7777779 + 33.33333333x + x2 = 486.1111112

Factor a perfect square on the left side:
(x + 16.66666667)(x + 16.66666667) = 486.1111112

Calculate the square root of the right side: 22.047927594

Break this problem into two subproblems by setting 
(x + 16.66666667) equal to 22.047927594 and -22.047927594.

Subproblem 1

x + 16.66666667 = 22.047927594 Simplifying x + 16.66666667 = 22.047927594 Reorder the terms: 16.66666667 + x = 22.047927594 Solving 16.66666667 + x = 22.047927594 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-16.66666667' to each side of the equation. 16.66666667 + -16.66666667 + x = 22.047927594 + -16.66666667 Combine like terms: 16.66666667 + -16.66666667 = 0.00000000 0.00000000 + x = 22.047927594 + -16.66666667 x = 22.047927594 + -16.66666667 Combine like terms: 22.047927594 + -16.66666667 = 5.381260924 x = 5.381260924 Simplifying x = 5.381260924

Subproblem 2

x + 16.66666667 = -22.047927594 Simplifying x + 16.66666667 = -22.047927594 Reorder the terms: 16.66666667 + x = -22.047927594 Solving 16.66666667 + x = -22.047927594 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-16.66666667' to each side of the equation. 16.66666667 + -16.66666667 + x = -22.047927594 + -16.66666667 Combine like terms: 16.66666667 + -16.66666667 = 0.00000000 0.00000000 + x = -22.047927594 + -16.66666667 x = -22.047927594 + -16.66666667 Combine like terms: -22.047927594 + -16.66666667 = -38.714594264 x = -38.714594264 Simplifying x = -38.714594264

Solution

The solution to the problem is based on the solutions from the subproblems. x = {5.381260924, -38.714594264}

See similar equations:

| 8+b*-4=5 | | -3k=-2 | | (90+82+81+2x)/4=86 | | 5x-3x+x=x+6 | | 4b=7(-2+5g) | | 5x+13=31 | | 225=9(4x)+9 | | 6y-5(y-5)+1=5 | | 5-x+3+x=2x | | H(s)=-16x+48x+6 | | 2x-3/2=3/4 | | 49/1/2 | | 1+7-6+3x=4x | | 25x+25y= | | 6y-5(y-1)+1=7 | | q-2=24 | | d//8=4 | | 6c-16=14 | | 11+v^2+18=0 | | 3.2x+0.4=-2 | | 6x+4y=6.70 | | 7+4(2x-1)=3x-5x(1x-6) | | 2(6a-2)-11a=8-3 | | 3[n-36]=15 | | 7+x+2x=3+5x | | 4m+18p= | | 35-22x+6-18x=19-30x+32 | | 64x^4-y^2=0 | | 3x-8+6x-41+6x-41=180 | | 5y+8=x | | -4+16-16x=46 | | 9.5+8.1b=3(13b+2) |

Equations solver categories